首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4957篇
  免费   149篇
  国内免费   190篇
  2023年   28篇
  2022年   38篇
  2021年   45篇
  2020年   56篇
  2019年   87篇
  2018年   96篇
  2017年   64篇
  2016年   81篇
  2015年   91篇
  2014年   208篇
  2013年   370篇
  2012年   136篇
  2011年   228篇
  2010年   154篇
  2009年   247篇
  2008年   250篇
  2007年   293篇
  2006年   227篇
  2005年   217篇
  2004年   211篇
  2003年   187篇
  2002年   142篇
  2001年   94篇
  2000年   94篇
  1999年   96篇
  1998年   111篇
  1997年   107篇
  1996年   78篇
  1995年   129篇
  1994年   103篇
  1993年   96篇
  1992年   93篇
  1991年   72篇
  1990年   66篇
  1989年   62篇
  1988年   73篇
  1987年   61篇
  1986年   73篇
  1985年   79篇
  1984年   86篇
  1983年   33篇
  1982年   42篇
  1981年   43篇
  1980年   52篇
  1979年   25篇
  1978年   19篇
  1977年   16篇
  1976年   14篇
  1975年   11篇
  1973年   7篇
排序方式: 共有5296条查询结果,搜索用时 31 毫秒
991.
Suspension culture cells initiated from haploid Datura inoxia seedlings were transferred on a paper and were treated with UV. The nitrate reductase (NR) deficient mutants were isolated by selection for chlorate resistance. The NR activity could not be recovered, even though the mutants were transferred into the medium without selective pressure for three years. Isoelectrofocusing gel showed that the gene of NR was not destroyed by the treatment of UV. The mutant cells were defective in the cytokinin binding protein. The cytokinin binding-protein was isolated from wheat seedlings with the aid of 6BA immobilized on the epoxy-sepharose colunm. An addition of binding-protein, together with 6BA, to the medium for synthesis of RNA in vitro brough about an activation of RNA-polymerase. In wild type cells the NR activity was accelerated by the addition of cytokinin to the culture medium. In contrast, cytokinin was of no effect on the synthesis of NR in mutant cells. It is, therefore, suggested that the effect of cytokinin on the RNA synthesis and NR formation was regulated by the content of cytokinin binding-protein in Datura inoxia mutant cells.  相似文献   
992.
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host‐induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference‐induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1‐based host‐induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS‐A) and Nicotiana benthamiana (HIGS‐N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.  相似文献   
993.
A mechanism for nitrate transport and reduction   总被引:1,自引:0,他引:1  
It is proposed that a tetrahedron-shaped, transmembrane nitrate reductase tetramer functions as a carrier for nitrate transport. Reduction and transport are thereby brought about by the same enzyme complex. An ATPase is visualized to be closely associated with the nitrate reductase tetramer. The tetramer is apparently oriented such that one monomer is exposed to the outside of the plasmalemma while the other three are exposed to the cytoplasmic side. This orientation yields a reaction mechanism where the transport and reduction of one nitrate ion is accompanied by the transport of two additional nitrate ions (i.e. a 3 : 1 transport-reduction ratio). The proportion of transported nitrate that is reduced is apparently modulated by thiol reversible ADP inhibition of reduction. This inhibition, however, is probably the result of adenylate binding at sites on the proposed nitrate-activated ATPase to which nitrate reductase is tightly coupled. An analogous system consisting of a nitrate reductase dimer that spans a unit membrane plus an ATPase is proposed to be responsible for nitrate transport and reduction in some algae and chloroplasts.  相似文献   
994.
[目的]探究丙酮丁醇梭菌硫氧还蛋白系统在生长和代谢过程中的功能.[方法]使用ClosTron系统对硫氧还蛋白系统中的硫氧还蛋白还原酶基因(trxB)进行插入失活,得到突变株,通过Southern杂交方法验证插入内含子的拷贝数;在基本培养基中进行分批发酵,比较并分析突变株的生长特点;通过pH控制,利用限磷的连续发酵方法使...  相似文献   
995.
Mutants Saccharomyces cerevisiae deleted on the trehalose-6-phosphate synthase gene (tps1) and their parental wild-type cells were submitted to hydrostatic pressure in the range of 0–200 MPa. Experimental evidence showed that viability for both strains decreased with increasing pressure and that tps1 mutants, unable to accumulate trehalose, were more sensitive to hydrostatic pressure than the wild-type cells. Additionally, both tps1 and wild-type cells in the stationary phase, when there is an accumulation of endogenous trehalose, were more resistant to pressure than proliferating cells. Under these conditions, mutant cells were also more sensitive to pressure treatment than the wild type. The present work also showed that mild pressure pretreatment did not induce hydrostatic pressure resistance (barotolerance) in yeast cells.  相似文献   
996.
Dihydrofolate reductase is an essential bacterial enzyme necessary for the maintenance of intracellular folate pools in a biochemically active reduced state. In this report, the Mycobacterium avium folA gene was identified by functional genetic complementation, sequenced, and expressed for the first time. It has an open reading frame of 543 bp with a G+C content of 73%. The translated polypeptide sequence shows 58% identity to the consensus sequence of the conserved regions from eight other bacterial dihydrofolate reductases. Recombinant M. avium dihydrofolate reductase was expressed actively in Escherichia coli, and SDS-PAGE analysis revealed a 20 kDa species, agreeable with that predicted from the polypeptide sequence.  相似文献   
997.
In order to characterize further the antilipoperoxidative enzyme system of human sperm, that part of the system designed to provide reducing equivalents for the reduction of highly reactive and potentially damaging lipid hydroperoxides to relatively inert hydroxylipids was examined. The substrate that provides the reducing equivalents directly to glutathione peroxidase (GPX) is reduced glutathione (GSH), which is in turn oxidized to glutathione disulfide (GSSG). The reducing equivalents needed for regeneration of GSH through the action of glutathione reductase (GRD) are provided by NADPH, produced by the action of glucose-6-phosphate dehydrogenase (G6P-DH) on substrates glucose-6-phosphate and NADP+. The kinetic properties of the enzymes GRD and G6P-DH were determined by standard enzyme activity assay at 24 and 37°C. At 37°C, the Vmax for GRD was found to be 36 nmol/min · 108 cells, with Km values for GSSG and NAPH of 150 μM and 16 μM, respectively; the Vmax for G6P-DH was 3.3 nmol/min · 108 cells with Km for NADP+ of 8 μM. This suggested that G6P-DH activity was limiting in this reductive pathway. The activity of GRD in situ in intact cells was estimated using the thiol-reactive fluorogenic probe ThioGlo-1, which is cell permeant and reacts rapidly with GSH to give a highly fluorescent adduct. Mixing a suspension of human sperm with the fluorogenic reagent at 37°C gave an initial rapid increase in fluorescence, followed by a slower one. The rapid phase is due to reaction with intracellular GSH already present; the slow phase is due to reaction with GSH generated by the GRD-catalyzed reduction of GSSG. Both rates showed first-order kinetics. Calculation of the maximal rate as NADPH oxidation, attributable to in situ GRD activity, gave the value of 1.0 nmol/min · 108 cells, less than the maximum for NADPH production by the dehydrogenase. These results support the suggestion that NADPH production limits the capacity of the pathway leading to hydroperoxide reduction in human sperm. We propose that the antilipoperoxidative defense system of human sperm has just sufficient capacity to allow these cells to fulfill their function but is limited to allow their timely disposal from the female reproductive tract. Mol. Reprod. Dev. 49:400–407, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
998.
Bovine adrenodoxin was cross-linked to adrenodoxin reductase with 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide. Mass spectrometry showed the reaction product to be a 1:1 complex of the two proteins with Mr = 64,790 ± 50. The cross-linked complex showed cytochrome c reductase activity and could be crystallized by hanging-drop vapor diffusion. Crystals of the adrenodoxin-adrenodoxin reductase complex are hexagonal, space group P6122 or P6522, with a = 93.26 Å and c= 612.20 Å and diffract to 2.9 Å resolution at 100 K. Assuming two cross-linked complexes per asymmetric unit yields a reasonable VM of 2.97 Å3/Da. Proteins 28:289–292, 1997. © 1997 Wiley-Liss Inc.  相似文献   
999.
烟草甲Lasioderma serricorne是一种重要的仓储害虫,长期化学防治导致烟草甲已对多种传统熏蒸剂产生抗性,但其对新型熏蒸剂甲酸乙酯仍处于敏感水平。因此明确其体内细胞色素P450还原酶(cytochrome P450 reductase, CPR)对甲酸乙酯的代谢解毒功能,对开展该药剂的抗性监测及延缓抗性的发生发展具有重要意义。本研究旨在克隆烟草甲LsCPR基因,分析其分子特征和表达特性,为进一步明确其在烟草甲对甲酸乙酯解毒代谢过程中的作用奠定基础。利用RT-PCR技术克隆烟草甲LsCPR基因的开放阅读框(open reading frame, ORF);利用生物信息学软件分析LsCPR编码蛋白的结构、特征和系统进化关系。采用实时定量PCR技术检测LsCPR在烟草甲不同发育阶段(低龄幼虫、高龄幼虫、蛹、低龄成虫、高龄成虫)、幼虫不同组织(表皮、肠道、脂肪体和马氏管)以及甲酸乙酯熏蒸胁迫后的表达模式。烟草甲LsCPR基因的ORF为2 046 bp(GenBank登录号:MZ423209),编码681个氨基酸,具有典型的昆虫CPR基因FMN区域、NADPH区域和FAD等保守结构域。系统发育分析表明,烟草甲LsCPR与鞘翅目昆虫聚为一支,且与赤拟谷盗Tribolium castaneum CPR亲缘关系最近。LsCPR在烟草甲不同发育阶段均有表达,在高龄幼虫期的表达水平较高;在幼虫体内的表达部位主要在肠道,其次为脂肪体和马氏管,而在表皮的表达水平最低。LC10、LC30和LC50 3种浓度的甲酸乙酯处理24 h后,烟草甲LsCPR表达量随着胁迫浓度升高而上调且显著高于对照;甲酸乙酯LC50处理烟草甲不同时间(3、6、12、24和48 h)后,LsCPR基因上调表达,24 h时达到表达高峰。推测LsCPR是参与烟草甲代谢甲酸乙酯的候选基因。  相似文献   
1000.
We determined the amino acid sequences of two keto ester reductases (YKER-V and -VI) purified from a cell-free extract of Saccharomyces cerevisiae. The N-terminal and internal amino acid sequences of YKER-VI (AcKR) were in agreement with the sequence of hypothetical 36.4-kDa protein (S. cerevisiae chromosome X reading frame ORF YJR105w) in yeast. The N-terminal amino acid sequence of YKER-V was also identical with that of the hypothetical protein coded by yeast chromosome XIV or II. These results suggested that two hypothetical proteins were expressed as keto ester reductases in yeast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号